
1

 MAHA BARATHI ENGINEERING COLLEGE
 NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

 www.mbec.ac.in│Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING

CEC331- 4G/5G Communication Networks

III Year/ VI Semester B.E ECE

Regulation 2021
(As Per Anna University, Chennai syllabus)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

2

 MAHA BARATHI ENGINEERING COLLEGE
 NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM (TK), KALLAKURICHI (DT) 606 201.

 Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
 Accredited by NAAC and Recognized under section 2(f) & 12(B) status of UGC, New Delhi

 www.mbec.ac.in │ Ph: 04151-256333, 257333 │ E-mail: mbec123@gmail.com
 __

 Certified that this is a bonafide record of workdone by

 Selvan/Selvi………………………………………………………………. ……………
 Reg.No.……………………………..of……Sixth…………………Semester…………

 Electronics and Communication Engineering ……Branch of ……B.E………..

 Degree Examination in the subject……………CEC331- 4G/5G Communication

 Networks……

 Staff In charge Head of the Department
 Date:

 Submitted for Anna University Practical Examination conducted on…………………

Internal Examiner External Examiner

BONAFIDE CERTIFICATE

3

CONTENTS

Expt

.No
Date Name of the Experiments

Page

No.

Marks

Obtained

Staff

Sign

1 5g-Compliant Waveform Generation and Testing

2
Modeling of 5g Synchronization Signal Blocks and
Bursts

3
Channel Modelling In 5G Networks

4

Multiband OFDM Demodulation

5
Perfect Channel Estimation

6 Development of 5G New Radio Polar Coding

4

LIST OF EXPERIMENTS

SIMULATION USING MATLAB

1. 5G-Compliant waveform generation and testing

2. Modelling of 5G Synchronization signal blocks and bursts

3. Channel Modelling in 5G networks

4. Multiband OFDM demodulation

5. Perfect Channel estimation

6. Development of 5g New Radio Polar Coding

Page | 1

EXPT NO: 1

Date:

5G-COMPLIANT WAVEFORM GENERATION
AND TESTING

AIM:

 To perform the 5G- compliant waveform generation and testing in Matlab

software.

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Setting Parameters for Carrier frequency, Sample rate, Number of

samples in the waveform, Signal-to-noise ratio

2. Generate random binary data for QPSK modulation.

3. QPSK Modulation

4. Create a time vector based on the number of samples and sample rate

5. Combine the in-phase and quadrature components to form the QPSK

signal.

6. Generate the carrier signal.

7. Modulate the QPSK symbols with the carrier signal to get the

transmitted signal.

8. Add AWGN (Additive White Gaussian Noise) to the transmitted signal.

9. Divide the received signal by the carrier signal to perform demodulation.

10. Extract the phase information from the received signal.

11. Convert the demodulated symbols back to bits by comparing the phase.

12. Plot the transmitted signal, and received signal with noise, and the

comparison of transmitted and decoded data.

Page | 2

MATLAB CODE:

clc;

clear all;

close all;

% Parameters

carrier-frequency = 3.5e9; % Carrier frequency in Hz (e.g., 3.5 GHz for

sub-6GHz 5G)

Sample Rate = 30.72e6; % Sample rate in Hz

Num Samples = 1024; % Number of samples in the waveform

snr = 20; % Signal-to-noise ratio in dB

% Generate a simple 5G waveform (QPSK modulation)

data = randi([0, 1], 2, numSamples); % Generate random bits for QPSK

modulation

qpskSymbols = 2 * data - 1; % Map bits to QPSK symbols (-1, 1)

% Create a time vector

time = (0:numSamples - 1) / sampleRate;

% Modulate the QPSK symbols

qpskSignal = qpskSymbols(1, :) + 1j * qpskSymbols(2, :);

% Generate the carrier signal

carrierSignal = exp(1j * 2 * pi * carrierFrequency * time);

% Generate the transmitted signal

transmittedSignal = qpskSignal .* carrierSignal;

% Add noise to the transmitted signal

noisySignal = awgn(transmittedSignal, snr, 'measured');

Page | 3

% Receiver

received signal = noisy signal / carrier signal;

% Demodulate the received signal

demodulatedSymbols = angle(receivedSignal);

% Decode the demodulated symbols back to bits

decodedData = demodulatedSymbols> 0;

% Plot the results

subplot(3, 1, 1);

plot(time, real(transmittedSignal));

title('Transmitted Signal (I Component)');

xlabel('Time (s)');

ylabel('Amplitude');

subplot(3, 1, 2);

plot(time, real(noisySignal));

title('Received Signal with Noise');

xlabel('Time (s)');

ylabel('Amplitude');

subplot(3, 1, 3);

stem(data(:), 'rx');

hold on;

stem(decodedData(:), 'bo');

title('Transmitted and Decoded Data');

xlabel('Sample Index');

ylabel('Bit Value');

legend('Transmitted Data', 'Decoded Data');

Page | 4

Output:

Result:

Thus the 5G-Compliant Waveform Generation and Testing in MATLAB

was successfully executed.

Page | 5

EXPT NO: 2

Date:

MODELING OF 5G SYNCHRONIZATION SIGNAL BLOCKS
AND BURSTS

AIM:

To perform the Model 5G Synchronization Signal Blocks (SSBs) and

Bursts in MATLAB software.

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Set Parameters for sampling frequency, cyclic prefix duration,

sampling period

2. Generate Primary Synchronization Signal (PSS)

3. Generate Secondary Synchronization Signal (SSS)

4. Repeat the PSS and SSS sequences to construct the full

synchronization signal burst.

5. Modulate the PSS and SSS sequences with the specified cyclic prefix

duration to create the burst signals.

6. Visualize the amplitude of the PSS and SSS bursts

7. Generate a simulated received signal by adding noise to the sum of

PSS and SSS bursts

8. Perform cross-correlation of the received signal with PSS and SSS

bursts to detect synchronization

9. Visualize the correlation results for PSS and SSS

Page | 6

MATLAB CODE:

clc;

clear all;

close all;

% Parameters

fs = 30.72e6; % Sampling frequency (Hz)

Tc = 1/4.6e6; % Cyclic Prefix duration (s)

Ts = 1/30.72e6; % Sampling period (s)

% Generate Primary Synchronization Signal (PSS)

N_id_1 = 0; % PSS identity (0 to 127)

n = 0:127;

pss = exp(1j * pi * N_id_1 * (n.*(n+1)/2));

% Generate Secondary Synchronization Signal (SSS)

N_id_2 = 0; % SSS identity (0 or 1)

m = 0:31;

sss = exp(1j * pi * N_id_2 * m);

% Generate Burst

n_burst = 0:255; % Burst duration in samples

pss_sequence = repmat(pss, 1, length(n_burst)/length(pss));

sss_sequence = repmat(sss, 1, length(n_burst)/length(sss));

% Construct full synchronization signal burst

pss_burst = pss_sequence .* exp(1j * 2 * pi * n_burst * Tc / Ts);

sss_burst = sss_sequence .* exp(1j * 2 * pi * n_burst * Tc / Ts);

% Plot the bursts

figure;

subplot(2,1,1);

Page | 7

plot(n_burst, abs(pss_burst));

title('Primary Synchronization Signal Burst');

xlabel('Sample Index');

ylabel('Amplitude');

subplot(2,1,2);

plot(n_burst, abs(sss_burst));

title('Secondary Synchronization Signal Burst');

xlabel('Sample Index');

ylabel('Amplitude');

% Correlation with received signal (for synchronization detection)

received_signal = awgn(pss_burst + sss_burst, 10); % Simulated received

signal with noise

% Correlation with PSS

correlation_pss = abs(xcorr(received_signal, pss_burst));

figure;

subplot(2,1,1);

plot(correlation_pss);

title('Correlation with Primary Synchronization Signal');

xlabel('Sample Index');

ylabel('Correlation');

% Correlation with SSS

correlation_sss = abs(xcorr(received_signal, sss_burst));

subplot(2,1,2);

plot(correlation_sss);

title('Correlation with Secondary Synchronization Signal');

xlabel('Sample Index');

ylabel('Correlation');

Page | 8

Output:

RESULT:

Thus the Modeling 5G Synchronization Signal Blocks (SSBs) and Bursts

using MATLAB was successfully executed.

Page | 9

EXPT NO: 3

Date:

CHANNEL MODELLING IN 5G
NETWORKS

AIM:

To simulate and analyze the propagation characteristics of wireless signals

in 5G networks using MATLAB.

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Set simulation parameters.

2. Define channel impulse response and normalize it.

3. Generate random QPSK symbols for transmission.

4. Convolve QPSK symbols with channel impulse response.

5. Add AWGN noise to the received waveform.

6. Plot transmitted QPSK symbols and received waveform.

Page | 10

MATLAB CODE:

clc;

clear all;

close all;

% Parameters

num_samples = 1000; % Number of samples in the waveform

snr_db = 20; % Signal-to-noise ratio in dB

% Generate a simple channel impulse response

channel_impulse_response = [0.1, 0.5, 0.8, 0.5, 0.1]; % Example channel

coefficients

% Normalize the channel response

channel_impulse_response = channel_impulse_response /

norm(channel_impulse_response);

% Generate a random QPSK waveform

qpsk_symbols = 2 * (randi([0, 1], 1, num_samples) - 0.5) +

1j * (2 * (randi([0, 1], 1, num_samples) - 0.5));

% Convolve the waveform with the channel impulse response

received_waveform = conv(qpsk_symbols, channel_impulse_response);

% Add AWGN noise

noise_power = 10^(-snr_db / 10);

noise = sqrt(noise_power / 2) * (randn(size(received_waveform)) + 1j *

randn(size(received_waveform)));

received_waveform = received_waveform + noise;

% Display the transmitted and received waveforms

figure;

subplot(2, 1, 1);

plot(real(qpsk_symbols), imag(qpsk_symbols), 'o');

title('Transmitted QPSK Symbols');

xlabel('I (In-phase)');

ylabel('Q (Quadrature)');

grid on;

subplot(2, 1, 2);

plot(real(received_waveform), imag(received_waveform), 'x');

title('Received Waveform after Channel and Noise');

Page | 11

xlabel('Real Part');

ylabel('Imaginary Part');

grid on;

% Add a title for the entire figure

figure_title = 'Channel Modeling in 5G Networks';

h = suptitle(figure_title);

set(h, 'FontSize', 14);

Output:

Result:

Thus the Channel modeling in 5G Networks using MATLAB was

successfully executed.

Page | 12

EXPT NO: 4

Date:

MULTIBAND OFDM DEMODULATION

AIM:

To implement efficient and accurate demodulation of Multi-Band Orthogonal

Frequency Division Multiplexing (MB-OFDM) signals using MATLAB.

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Set simulation parameters.

2. Generate Random QPSK Symbols

3. Perform IFFT

4. Add a cyclic prefix to the time-domain waveform.

5. Up sample the waveform to account for oversampling.

6. Generate and Add Noise to the Transmitted Waveform.

7. Down sample the received waveform to account for the oversampling

8. Remove the cyclic prefix from the received waveform.

9. Perform a Fast Fourier Transform (FFT) on the received waveform &

Demodulate QPSK Symbols.

Page | 13

MATLAB CODE:

clc;

clear all;

close all;

% Parameters

num_subcarriers = 64; % Number of subcarriers

num_symbols = 100; % Number of symbols

oversampling_factor = 4; % Oversampling factor

sampling_rate = 1e6; % Sampling rate in Hz

symbol_rate = 10e3; % Symbol rate in Hz

snr_db = 20; % Signal-to-noise ratio in dB

% Generate random QPSK symbols

qpsk_symbols = randi([0, 3], num_subcarriers, num_symbols);

qpsk_symbols = exp(1j * pi / 2 * qpsk_symbols);

% Perform IFFT to generate time-domain waveform

time_domain_waveform = ifft(qpsk_symbols, num_subcarriers) *

sqrt(num_subcarriers);

% Add cyclic prefix (CP)

cp_length = 16;

cp = time_domain_waveform(end - cp_length + 1:end, :);

time_domain_waveform_with_cp = [cp; time_domain_waveform];

% Upsample the waveform

tx_waveform = upsample(time_domain_waveform_with_cp,

oversampling_factor);

% Generate AWGN noise

noise_power = 10^(-snr_db / 10);

noise = sqrt(noise_power / 2) * (randn(size(tx_waveform)) + 1j *

randn(size(tx_waveform)));

% Add noise to the transmitted waveform

rx_waveform = tx_waveform + noise;

% Downsample the received waveform

rx_waveform_downsampled = downsample(rx_waveform,

oversampling_factor);

Page | 14

% Remove cyclic prefix

rx_waveform_no_cp = rx_waveform_downsampled(cp_length + 1:end, :);

% Perform FFT to obtain frequency-domain symbols

rx_freq_symbols = fft(rx_waveform_no_cp, num_subcarriers);

% Demodulate QPSK symbols

rx_qpsk_symbols = angle(rx_freq_symbols);

% Choose a subcarrier index for plotting (e.g., the first subcarrier)

subcarrier_index = 1;

% Display the received symbols before and after demodulation

subplot(2, 1, 1);

plot(real(rx_freq_symbols(:)), imag(rx_freq_symbols(:)), 'o');

title('Received Symbols (Frequency Domain)');

xlabel('Real Part');

ylabel('Imaginary Part');

grid on;

subplot(2, 1, 2);

% Plot the demodulated QPSK symbols for the chosen subcarrier

plot(1:num_symbols, rx_qpsk_symbols(subcarrier_index, :), 'o');

title(['Demodulated QPSK Symbols (Subcarrier ', num2str(subcarrier_index),

')']);

xlabel('Symbol Index');

ylabel('Phase Angle (radians)');

grid on;

% Add a title for the entire figure

figure_title = 'Multiband OFDM Demodulation';

h = suptitle(figure_title);

set(h, 'FontSize', 14);

Page | 15

Output:

Result:

 Thus the Demodulation of Multi-Band Orthogonal Frequency Division

Multiplexing (MB-OFDM) signals using MATLAB was successfully executed.

Page | 16

EXPT NO: 5

Date:

PERFECT CHANNEL ESTIMATION

AIM:

To achieve accurate and optimal channel estimation for 5G communication

systems using MATLAB

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Set simulation parameters.

2. Generate Random Channel Matrix & Random Symbols

3. Modulate the symbols using QPSK modulation.

4. Transmit the modulated symbols through the generated channel

matrix.

5. Add Noise to Received Symbols.

6. Perform Channel Estimation & Calculate Mean square error (MSE).

7. Plot the true and estimated channel matrices.

Page | 17

Matlab Code:

clc;

clear all;

close all;

% Parameters

num_antennas = 4; % Number of antennas at the transmitter / receiver

num_symbols = 100; % Number of symbols

snr_db = 20; % Signal-to-noise ratio in dB

% Generate random channel matrix

H_true = (randn(num_antennas, num_antennas) + 1i *

randn(num_antennas, num_antennas)) / sqrt(2);

% Generate random symbols

symbols = randi([0, 1], num_antennas, num_symbols);

% Modulate symbols (e.g., using QPSK)

modulated_symbols = 2 * symbols - 1;

% Transmit symbols through channel

received_symbols = H_true * modulated_symbols;

% Add noise to received symbols

noise_power = 10^(-snr_db / 10);

noise = sqrt(noise_power/2) * (randn(num_antennas, num_symbols) + 1i *

randn(num_antennas, num_symbols));

received_symbols_with_noise = received_symbols + noise;

% Perform channel estimation using received and transmitted symbols

estimated_H = received_symbols_with_noise * pinv(modulated_symbols);

% Calculate mean squared error (MSE) of the estimated channel

mse = mean(mean(abs(H_true - estimated_H).^2, 'omitnan'));

% Display MSE

disp(['Mean Squared Error: ', num2str(mse)]);

% Plot the true and estimated channel matrices

subplot(1, 2, 1);

imagesc(abs(H_true));

colormap('hot');

Page | 18

colorbar;

title('True Channel Matrix');

xlabel('Transmit Antennas');

ylabel('Receive Antennas');

subplot(1, 2, 2);

imagesc(abs(estimated_H));

colormap('hot');

colorbar;

title('Estimated Channel Matrix');

xlabel('Transmit Antennas');

ylabel('Receive Antennas');

% Add a title for the entire figure

figure_title = '5G Perfect Channel Estimation';

h = suptitle(figure_title);

set(h, 'FontSize', 14);

Page | 19

Output:

Mean Squared Error: 0.00010273

Result:

Thus the accurate and optimal channel estimation for 5G communication

systems using MATLAB was successfully executed.

Page | 20

EXPT NO: 6

Date:

DEVELOPMENT OF 5G NEW RADIO POLAR CODING

AIM:

To perform Polar Coding and Decoding using MATLAB.

SOFTWARE USED:

PC with MATLAB Software

PROCEDURE:

1. Initializes the parameters for the polar code, including the length of

information bits and CRC bits

2. Generate Random information bits are generated for transmission

3. Create Polar Code

4. Encode Information Bits

5. Add CRC Bits to the encoded codeword for error detection

6. Simulate Channel Errors by adding AWGN (Additive White Gaussian

Noise) to the transmitted codeword.

7. Perform Polar Decoding to recover the information bits, considering the

CRC for error checking.

8. Check CRC for Error Detection

9. Display transmitted and received information bits

Page | 21

Matlab Code:

clc;

clear all;

close all;

% Set the parameters for polar coding

infoLength = 16; % Number of information bits

crcLength = 8; % Number of CRC bits

% Generate random information bits (0s and 1s)

infoBits = randi([0, 1], infoLength, 1);

% Create a polar code using the 5G NR code construction rules

polarCode = nrPolarCode(infoLength, infoLength + crcLength);

% Encode the information bits using the polar code

codeword = nrPolarEncode(infoBits, polarCode);

% Add CRC bits to the codeword

crc = comm.CRCGenerator('Polynomial', 'z^8 + z^2 + 1');

crcBits = crc(codeword);

% Simulate channel errors (for demonstration purposes)

receivedCodeword = awgn(codeword, 10); % Add AWGN noise (10 dB SNR)

% Perform polar decoding to recover the information bits

decodedInfoBits = nrPolarDecode(receivedCodeword, polarCode, crc);

% Check CRC to verify the correctness of the decoded information bits

crcDetector = comm.CRCDetector('Polynomial', 'z^8 + z^2 + 1');

isCRCValid = crcDetector(receivedCodeword);

22

% Display the results

disp('Transmitted Information Bits:');

disp(infoBits.');

disp('Received Information Bits:');

disp(decodedInfoBits.');

if isCRCValid

disp('CRC Check: Passed (Decoded information is correct).');

else

disp('CRC Check: Failed (Decoded information has errors).');

end

Output:

 Result:

 Thus the Polar Coding and Decoding using MATLAB was successfully
executed.

	AIM:
	SOFTWARE USED:
	PROCEDURE:
	MATLAB CODE:
	% Parameters
	% Generate a simple 5G waveform (QPSK modulation)
	% Create a time vector
	% Modulate the QPSK symbols
	% Generate the carrier signal
	% Generate the transmitted signal
	% Add noise to the transmitted signal
	% Receiver
	% Demodulate the received signal
	% Decode the demodulated symbols back to bits
	% Plot the results
	Output:
	AIM: (1)
	SOFTWARE USED: (1)
	PROCEDURE: (1)
	MATLAB CODE: (1)
	% Parameters (1)
	% Generate Primary Synchronization Signal (PSS)
	% Generate Secondary Synchronization Signal (SSS)
	% Generate Burst
	% Construct full synchronization signal burst
	% Correlation with PSS
	% Correlation with SSS
	Output: (1)
	AIM: (2)
	SOFTWARE USED: (2)
	PROCEDURE: (2)
	MATLAB CODE: (2)
	% Parameters (2)
	% Generate a random QPSK waveform
	% Convolve the waveform with the channel impulse response
	% Add AWGN noise
	% Display the transmitted and received waveforms
	% Add a title for the entire figure
	Output: (2)
	AIM: (3)
	SOFTWARE USED: (3)
	PROCEDURE: (3)
	MATLAB CODE: (3)
	% Parameters (3)
	% Generate random QPSK symbols
	% Add cyclic prefix (CP)
	% Upsample the waveform
	% Generate AWGN noise
	% Add noise to the transmitted waveform
	% Remove cyclic prefix
	% Perform FFT to obtain frequency-domain symbols
	% Demodulate QPSK symbols
	% Choose a subcarrier index for plotting (e.g., the first subcarrier)
	% Display the received symbols before and after demodulation
	Output: (3)
	AIM: (4)
	SOFTWARE USED: (4)
	PROCEDURE: (4)
	Matlab Code:
	% Parameters (4)
	% Generate random channel matrix
	% Generate random symbols
	% Modulate symbols (e.g., using QPSK)
	% Transmit symbols through channel
	% Add noise to received symbols
	% Perform channel estimation using received and transmitted symbols
	% Calculate mean squared error (MSE) of the estimated channel
	% Display MSE
	% Plot the true and estimated channel matrices
	Output: (4)
	Result:
	AIM: (5)
	SOFTWARE USED: (5)
	PROCEDURE: (5)
	Matlab Code: (1)
	% Generate random information bits (0s and 1s)
	% Create a polar code using the 5G NR code construction rules
	% Encode the information bits using the polar code
	% Add CRC bits to the codeword
	% Simulate channel errors (for demonstration purposes)
	% Perform polar decoding to recover the information bits
	% Check CRC to verify the correctness of the decoded information bits
	Output: (5)

